
Straight Skeleton Implementation

Petr Felkel and �St�ep�an Obdr�z�alek

felkeljxobdrzal@fel.cvut.cz�

Reprinted from: L�azl�o Szirmay-Kalos (ed.). Proceedings of Spring Conference on Computer Graphics, Budmerice, Slo-

vakia. ISBN 80-223-0837-4. Pages 210{218. http://www.cgg.cvut.cz/Publications/felkel sccg 98.ps.gz

Abstract

Straight skeleton (Angular Bisector Network, ABN) of a planar polygon, which can be grasped
as a modi�cation of a planar Voronoi diagram without parabolic arcs, has been successfully used
by Oliva et al. [5] as a part of a system for three dimensional reconstruction of objects from a given
set of 2D contours in parallel cross sections. The algorithm itself is used for the construction of
intermediate contour layers during the reconstruction process, in order not to create self intersected
surface triangles or a surface with holes.

But { Oliva's algorithm is not publicly available and we have not found any other useful code
on the net. We have followed our older ideas [4] and implemented our version of straight skeleton.
Our algorithm runs in O(nm+ n log n) time, where n denotes the total number of polygon vertices
and m the number of reex ones.

1 Introduction

Skeleton like structure is often used for the description of basic topological characteristics of a 2D object.
In the image processing and the computer vision �elds, skeleton, informally de�ned as a set of discrete
points in raster environment located in the centers of circles included in the object that touch the object
boundary in at least two distinct points [7], is used. Very similar goal can be achieved in the continuous
vector environment by a medial axis of a polygon (a subset of generalized Voronoi diagram), which
consists of line segments and parabolic arcs.

Aichholzer [1] resp. Oliva et al. [5] introduced a new internal structure for simple planar poly-
gon called straight skeleton resp. Angular Bisector Network, ABN, which is made up of straight line
segments, which are pieces of angular bisectors of polygon edges.

There is a lot of literature about construction of the Voronoi Diagram, eg. [6, 2] and publicly available
algorithms for its computation, but, as we know, the idea of straight skeleton is mentioned very rarely
and there is no publicly available implementation of the algorithm.

In this article we describe our implementation of the straight skeleton algorithm. We exploit it
in segmentation of the capillary bed of the human placenta for a 3D reconstruction from contours in
parallel cross sections. The idea of reconstruction itself was described by Oliva et al. [5]. We apply the
reconstructed surface constructed from easy segmentable slices for prediction of the contour shape in
the slices in between, where the boundaries of object of interest are not sharp [3].

2 Straight Skeleton Computation

We can imagine the principle of the algorithm as a construction of a roof with constant slope from
given shape of the walls [1, 4]. It can be done by a sweep algorithm, which simulates cutting of the roof
by parallel planes and checks local changes of the polygonal base in the cross sections. In a 2D view,
it appears as shrinking of the polygon. The polygon edges are moving in constant speed inward the
polygon and they are changing their lengths. The polygon vertices move along the angular bisectors as
long as the polygon changes its topology. Aichholzer [1] described two possible types of changes:
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� Edge event: An edge shrinks to zero, making its neighboring edges adjacent.

� Split event: A reex vertex runs to this edge and splits it, thus split the whole polygon. New
adjacencies occur between the split edge and each of the two edges incident to the reex vertex.

The straight skeleton S(P ) of the polygon P is de�ned as the union of the pieces of angular bisectors
traced out by polygon vertices during the shrinking process. Each edge (a straight line segment) e sweeps
out certain area which we call face of e. Bisector pieces are called arcs, and their endpoints which are
not vertices of P are called nodes of S(P ). See an example in �g. 1, where the straight skeleton arcs are
drawn by a thick lines and shape of intermediate levels by a thin line, and for more details refer to [1].
Our algorithm handles vertices and nodes the same way.

Figure 1: Polygon hierarchy (thin line) and straight skeleton { by [1]

We will describe the method for straight skeleton computation in two steps. At �rst for a convex
polygon, then for a non-convex one. Our algorithm applies the principle of the roof construction by
sweeping, but instead of constructing the polygonal base in the cross sections, it manages only the
pointers to the edges of the original polygon.

The basic data structure used by the algorithm is a set of circular lists of active vertices (SLAV).
This structure stores a loop of vertices for outer boundary and for all holes and sub-polygons created
during the straight skeleton computation. In the case of convex polygon, it always contains only one list
(LAV). In the case of a simple non-convex polygon, it stores a list for every sub-polygon (as described
later) and in the case of polygons with holes also a list for each hole.

All the vertices in the SLAV have references to both neighbors (vertices of the polygon) in the
circular lists (LAV) stored in SLAV.

2.1 Convex Polygon Skeleton Computation

Given a simple convex polygon P , only the edge events occur and the straight skeleton S(P ) is computed
in the following steps (We suppose the polygon vertices and edges are oriented counter-clockwise and
the polygon interior is on the left-hand side of its boundary):

1. Initialization:
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(a) Organize given vertices V1; V2 : : : ; Vn into one double connected circular list of active vertices
(LAV) stored in SLAV. The vertices in LAV are all active at this moment.

(b) for each vertex Vi in LAV add the pointers to two incident edges ei�1 = Vi�1Vi and ei =
ViVi+1, and compute the vertex angle bisector (ray) bi,

(c) for each vertex Vi compute the nearer intersection of the bisector bi with adjacent vertex
bisectors bi�1 and bi+1 starting at the neighboring vertices Vi�1; Vi+1 and (if it exists) store
it into a priority queue according to the distance to the line L(ei) which holds the edge ei.
For each intersection point Ii store also two pointers to the vertices Va, Vb, that means two
origins of bisectors which have created the intersection point I . They are necessary for the
identi�cation of appropriate edges (ea and eb in �g. 2) during the bisector computation in
later steps of the algorithm.

2. While the priority queue with the intersection points is not empty do:

(a) Pop the intersection point I from the front of the priority queue,

(b) if the vertices/nodes Va and Vb, pointed by I , are marked as processed
then continue on the step 2,
else the edge e between the vertices/nodes Va, Vb shrinks to zero (edge event - this edge is in
�g. 2 marked by a cross),

(c) if the predecessor of the predecessor of Va is equal to Vb (peak of the roof)
then output three straight skeleton arcs VaI , VbI and VcI , where Vc is the predecessor of Va
and the successor of Vb in the LAV simultaneously, and continue on the step 2,

(d) output two skeleton arcs of the straight skeleton VaI and VbI ,

(e) modify the list of active vertices/nodes (See �gure 2 for details):

� Mark the vertices/nodes Va; Vb (pointed to by I) as processed (marked by a cross in
�g. 2),

� create a new node V with the coordinates of the intersection I (a square mark in �g. 2),

� insert this new node V into the LAV. That means connect it with the predecessor of Va
and the successor of Vb in the LAV,

� link the new node V with appropriate edges ea and eb (pointed to by the vertices Va and
Vb),

(f) for the new node V , created from I , compute:

� a new angle bisector b between the line segments ea and eb, and

� the intersections of this bisector with the bisectors starting from the neighbor vertices in
the LAV in the same way as in the step 1c,

� store the nearer intersection (if it exists) to the priority queue.

As you can see in the steps 1c and 2f, there are duplicities among the intersection points in the
priority queue. The algorithm always computes one intersection for one vertex. Step 2b removes these
duplicities.

2.2 Non-convex Polygon Skeleton Computation

The principle of the method for the straight skeleton computation is in the case of non-convex polygons
similar. New intersection points (one for each vertex/node in all LAVs in the SLAV) are after their
computation stored into the priority queue as in the section 2.1, but they have a new attribute indicating
their event type: edge event or split event.

At �rst, we discuss the circumstances which we have to take into account.
Presence of a reex vertex may (but may not) lead into a polygon splitting (see �g. 3). In case of

the point A a standard edge event occurs which is handled the same way as the edge event of non-reex
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Figure 2: Initialization and the �rst three steps of the skeleton algorithm for convex vertices

vertex (as described in the section 2.1). We will concentrate on the case of the point B, where a split
event occurs.

The �rst task is to determine the coordinates of the point B. Then we will discuss the insertion
of B into the appropriate LAV in the SLAV and a special case of a multiple split edge. The name B
represents the coordinates of the tested intersection point and also the coordinates of the new vertex
inserted into LAV. We will distinguish them in the algorithm.

Determination of the coordinates of the point B

Point B can be characterized as having the same perpendicular distance to the straight line carrying
the "opposite" line segment to the vertex V and from both straight lines containing the line segments
starting at the vertex V . We have to �nd such an "opposite" line segment.

We traverse all line segments e of the original polygon and test them whether they can be the
"opposite" line segments. Unfortunately a simple test of the intersection between a bisector starting at
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Figure 3: Reex vertex can yield to both cases: an edge event (point A) or a split event (point B)

Figure 4: Intersection point computation for a reex vertex V which yields a split event (point B)

V and the currently tested line segment cannot be used (see �g. 4b). We have to test the intersection
with the line holding the edge ei and to test whether the candidate point Bi lays in the area limited by
the currently tested edge ei and by the bisectors bi and bi+1 leading from the vertices at both ends of
this line segment (see �g. 4a,b).

Simple intersection test between the bisector starting at V and the (whole) line containing the
currently tested line segment ei rejects the line segments laying "behind" the vertex V . We then
compute the coordinates of the candidate point Bi as the intersection between the bisector at V and
the axis of the angle between one of the edges starting at V and the tested line segment ei (see �g. 4).
Simple check should be performed to exclude the case when one of the line segments starting at V is
parallel to ei.

The resulting point B is selected from all the candidates Bi as the nearest point to the vertex V .

Managing of the LAV in the case of a split event

When the intersection B of the split event type is processed, it is necessary to split the appropriate
polygon into two parts. Splitting of the polygon also implies splitting of the appropriate LAV into two
parts and implies insertion of two new nodes X with the coordinates taken from B into them { each
copy into one LAV.
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Both copies of X points to the same split edge and share it.

A special case of multiple splitting of the edges

As mentioned before, the algorithm works with the original edges and doesn't construct the intermediate
roof shapes in the cross-sections. This yields the situation when one original line segment is shared by
more than one intermediate polygons after the previous polygon split. In such a case when one line
segment is already split and the next edge event occurs we have to choose the opposite line segment
end-points correctly (resp. the vertices/nodes which are active in the current roof construction level as
the points X and Y in �g. 5).

Figure 5: Correct selection of the active vertex/node X for already split edge

In the case of the sub-edge SY , which is a part of the edge ei = ZY , which shrinks and sweeps to
the point X , the real end point of the original line segment ei is the point Z, but we search for the point
X , which is necessary for the correct interconnection of pointers when the new node B is inserted into
the SLAV (into two LAVs). We mention two methods how to determine X .

One possible solution is to split the border line segment physically and to create a new auxiliary
vertex S. It removes the cause of the problem, because no edge will be divided more than once and
the split edge end-points determination is trivial. It also implies that the insertion of the new node
B into the SLAV is also trivial, as we know exactly in which of the sub-polygons (LAV) it has to be
interconnected. It solves the problem with the shared edge ei but such a vertex S has to be handled in
a special way, because it is not included in the skeleton.

Our solution is based on the idea to store only the nodes which are present in the straight skeleton
and on the fact, that the references to the split line segments are stored in all of the sub-polygons, which
share these line segments. It reveals during the traversal of all sub-polygon LAVs in multiple hits of the
split line segment, each time for each sub-polygon sharing it.

For instance the two subpolygons in �g. 5 share a reference to the edge ei. During the processing
of the intersection B caused by the vertex V the polygon XMVNY is split into two parts XMB and
BNY and the vertex V is marked as processed.

All it is done for the reason to correctly connect B between Y and X and not between original
endpoints Y and Z. During the SLAV traversal the correct part of the split edge ei is selected (de-
termined by Y and X) by means of the same criterion as described before, i.e. the candidate point B
lays rightwards of the traversed vertex bisector Y and leftwards of the bisector of the traversed vertex's
successor X in LAV.
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Figure 6: Split event at the reex vertex: a) managing the edge pointers, b) LAV split caused by the
new nodes V1 and V2

The algorithm for non-convex polygons

Algorithm for non-convex polygons is in principle similar to the algorithm described in the section 2.1.
As an extension, it handles the intersections that may generate polygon splits (split events):

1. Initialization

(a) Generate one LAV as in the convex case, store it in SLAV,

(b) compute the vertex bisectors as in the convex case,

(c) compute intersections with the bisectors from the previous and the following vertices as in
the convex case and for reex vertices compute also the intersections with the \opposite"
edges (point B in �gs. 3 and 4). Store the nearest intersection point I of these three ones
into the priority queue. In addition store also the type of the intersection point (edge event
or split event).

2. While the priority queue is not empty do:

(a) Pop the lowest intersection I from queue as in the convex case. If the type of I is the edge
event,
then process steps 2b to 2g of the algorithm for convex polygons,
else (split event) continue within this algorithm,

(b) if the intersection point points to already processed vertices continue on step 2 as in the
convex case,

(c) do the same as in the convex case, only the meaning is a bit di�erent, because more local
peaks of the roof exist,

(d) output one arc V I of the straight skeleton, where vertex/node V is the one pointed to by
the intersection point I . Intersections of the split event type point exactly to one vertex in
LAV/SLAV,

(e) modify the set of lists of active vertices/nodes (SLAV):

� Mark the vertex/node V (pointed to by I) as processed,

� create two new nodes V1 and V2 with the same coordinates as the intersection point I ,

� search the opposite edge in SLAV (sequentially),
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� insert both new nodes into the SLAV (break one LAV into two parts | see �g. 6b for an
example). Vertex V1 will be interconnected between the predecessor of V (M in �g. 6)
and the vertex/node which is an end point of the opposite line segment (X on �g. 6). V2
will be connected between the successor of V (N on �g. 6) and the vertex/node which is
a starting point of the opposite line segment (Y on �g. 6). This step actually splits the
polygon shape into two parts (as discussed before in this section).

� link the new nodes V1 and V2 with the appropriate edges (see �g. 6a).

(f) for both nodes V1 and V2:

� compute new angle bisectors between the line segments linked to them in step 2e,

� compute the intersections of these bisectors with bisectors starting at their neighbor
vertices according to the LAVs (e.g. at points N and Y and M and X in �g. 6a), the
same way as in step 1c. New intersection points of both types may occur, and

� store the nearest intersection into the priority queue.

2.3 Polygon with Holes Straight Skeleton Computation

Our algorithm can also handle the polygons with holes as long as they have the appropriate orientation.
That means the polygon interior lays leftwards from all of the line segments, vertices of the outer
boundary are in counter-clockwise order and the vertices of the holes are in clockwise order. It yields
in more cycles of vertices (LAVs) in the SLAV in the step 1a of the algorithm.

An example of the straight skeleton of a polygon with one hole is in �g. 7.

Figure 7: An example of the straight skeleton of a polygon with a hole

3 The Results and Conclusion

We have implemented an algorithm for construction of a straight skeleton of non-convex polygons with
holes, which runs in O(nm + n logn) time, where n denotes the total number of polygon vertices and
m the number of reex ones. The algorithms handles convex, non-convex polygons and polygons with
holes correctly.

Handling of the split events takes time O(n logn) with O(n) storage in the priority queue, but it is
not the signi�cant part for the whole complexity. The most time consuming task is the computation
of the split events | that means handling m (m < n) reex vertices. That yields the global time
complexity of the presented algorithm O(n2) (O(nm)) with O(n) storage. That is a similar result as
in [5].
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We have performed the measurements of the time complexity of the algorithm for polygons with
increasing number of vertices. The execution times for di�erent non-convex polygons (as shown in �g. 8)
con�rm the theoretical presumptions of its quadratic time complexity.
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Figure 8: Results of the tests for polygons with di�erent number of vertices

The C++ code for straight skeleton is available upon request.
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